
Rebecca Hartman-Baker!
User Engagement Group Leader

Using Craypat &
Reveal on Cori

-	1	-	

November	2,	2016	

Outline

I.   Profiling	with	Craypat	
II.   Using	Reveal	for	OpenMP	

-	2	-	

I. PROFILING WITH CRAYPAT

Profile	of	Cochise	in	the	Chiricahua	Mountains	by	Ken	Bosma,	hGp://www.flickr.com/photos/kretyen/2879059366/	

I. Profiling with Craypat

•  IntroducRon	
•  Simple	profiling	
•  Full-service	profiling	

-	4	-	

Introduction

•  Craypat	is	Cray’s	Performance	Analysis	Tool	
•  Evaluate	program	behavior	on	Cray	supercomputer	

–  Under	any	PrgEnv	
•  Find	hotspots,	load	imbalance,	inefficiencies	

–  I/O,	memory	usage	
– MPI	communica<ons	
–  Flops	
–  Recommenda<on	for	rank	reordering	(some<mes)	

•  Profiler	with	limited	tracing	abiliRes	
–  Tracing	tools	with	beJer	performance:	MAP,	VampirTrace	

-	5	-	

Simple Profiling with CrayPat

•  perftools-lite module	easier	to	use	&	does	
(almost)	everything	in	perftools

•  Compile	code	with	perftools-lite module	
loaded	

•  Run	code	as	normal	
•  Output:	

–  Stdout	&	*.rpt file:	report	with	execu<on	<me,	
memory	high-water	mark,	aggregate	FLOPS	rate,	top	<me-
consuming	user	func<ons,	MPI	info,	etc.	

–  *.ap2 file:	can	be	viewed	with	Appren<ce	2	
–  (Possibly) MPICH_RANK_REORDER file	

-	6	-	

Example Output (Preamble)

CrayPat/X: Version 6.4.0 Revision bc8f5bd 05/24/16 17:52:13
Experiment: lite lite/sample_profile
Number of PEs (MPI ranks): 64
Numbers of PEs per Node: 64
Numbers of Threads per PE: 1
Number of Cores per Socket: 68
Execution start time: Thu Oct 13 09:30:31 2016
System name and speed: nid04403 1401 MHz (approx)
Intel knl CPU Family: 6 Model: 87 Stepping: 1
MCDRAM: 7.2 GHz, 16 GiB available as quad, flat (0% cache)

Avg Process Time: 558.16 secs
High Memory: 1,899.7 MBytes 29.7 MBytes per PE
I/O Read Rate: 4.032070 MBytes/sec
I/O Write Rate: 3.618872 MBytes/sec

	
-	7	-	

Example Output (Function Performance)

Table 1: Profile by Function Group and Function (top 10 functions shown)

 Samp% | Samp | Imb. | Imb. |Group
 | | Samp | Samp% | Function
 | | | | PE=HIDE

 100.0% | 55,700.3 | -- | -- |Total
|--
| 49.3% | 27,466.0 | -- | -- |ETC
||---
|| 15.6% | 8,679.3 | 1,276.7 | 13.0% |__cray_HCOSS_01
|| 12.2% | 6,821.2 | 1,167.8 | 14.8% |__cray_COS_V_01
|| 8.9% | 4,948.8 | 581.2 | 10.7% |_COS_Z

|| 2.3% | 1,285.3 | 335.7 | 21.0% |gotoblas_daxpy_k_knl
|| 1.9% | 1,071.1 | 235.9 | 18.3% |gotoblas_blas_memory_alloc_knl
|| 1.9% | 1,039.9 | 185.1 | 15.3% |gotoblas_dger_k_knl
||===
| 35.5% | 19,747.6 | -- | -- |USER
||---
|| 23.0% | 12,803.4 | 1,592.6 | 11.2% |intgrd_
|| 7.6% | 4,229.4 | 1,033.6 | 20.0% |dfshre_

|| 3.1% | 1,707.7 | 501.3 | 23.1% |drlhre_
||===
| 14.7% | 8,169.4 | 21,597.6 | 73.7% |MPI
||---
|| 14.7% | 8,169.4 | 21,597.6 | 73.7% |MPI_Recv
|==

 -	8	-	

Simple Profiling Recipe

•  Load/unload	modules:	
–  module unload darshan
–  module load perftools-base perftools-
lite

•  Compile	and	run	your	code	as	usual	

-	9	-	

Full-Service Profiling

•  MoRvaRon:	
–  Need	more	info	than	perZools-lite	provides	
– Want	to	ignore	certain	subrou<nes	
–  Focus	on	par<cular	class	of	func<ons	
–  Tracing	rather	than	profiling	

•  Super-deluxe	profiling	recipe	
•  pat_build	opRons	

-	10	-	

Super-Deluxe Profiling Recipe (1)

•  Load/unload	modules:	
–  module unload darshan
–  module load perftools-base perftools

•  Compile	code	as	usual,	making	sure	to	preserve	
object	files	

•  pat_build –O apa myapp
–  Generates	executable	called	myapp+pat

•  Run	myapp+pat
–  Results	in	output	file	with	name	like	myapp+pat
+######.xf or	directory	called	myapp+pat+######

-	11	-	

Super-Deluxe Profiling Recipe (2)

•  pat_report myapp+pat+*.xf
–  Generates	myapp+pat+*.apa

•  pat_build –O myapp+pat+*.apa
–  Generates	executable	called	myapp+apa

•  Run	myapp+apa
•  pat_report myapp+apa+*.xf

-	12	-	

pat_build Options

•  pat_build -O apa myapp
–  Craypat	output	for	myapp+pat will	be	sampling	to	determine	
which	subrou<nes	can	be	ignored	in	full	run.	Addi<onal	file,	
*.apa,	produced	from	pat_report

–  AZer	this	run,	execute pat_build -O *.apa	file	to	re-
instrument	myapp+pat into	myapp+apa and	run	myapp
+apa	to	get	performance	info	

•  pat_build -g tracegroup myapp
–  tracegroup	is	group	of	func<ons	that	can	be	automa<cally	
traced	by	CrayPat.	Op<ons	include:	blas,	fftw,	mpi,	
netcdf,	petsc

•  pat_build -w myapp
–  Do	tracing	experiment	instead	of	profiling	

-	13	-	

II. PARALLELIZATION WITH CRAY
REVEAL

“Happiness	Revealed,”	by	Leonard	Farshore,	hGps://flic.kr/p/9z7isd	

Cray Reveal

•  Tool	for	porRng	to	shared-memory	or	offload	
programming	models	

•  Combine	profiling	info	from	Craypat	and	Cray	
compiler	annotaRon	to	determine	where	to	place	
OpenMP	direcRves	(generated	automaRcally)	

•  Works	ONLY	with	Cray	programming	environment	

-	15	-	

Using Cray Reveal

1.   Compile	code	with	Craypat	instrumentaRon	and	
create	program	library	

2.   Run	representaRve	job	
3.   Run	Reveal	
4.   Insert	direcRves,	consider	loop	reordering,	and	

analyze	performance	from	opRmizaRons	

-	16	-	

Cray Reveal Recipe (1)

•  Load/unload	modules:	
–  module unload darshan
–  module swap PrgEnv-intel PrgEnv-cray
–  module load perftools-base perftools

•  Compile	&	link	with	
–  -h profile_generate (to	instrument),	and	
–  -h pl=/directory/path/myapp.pl (for	compiler	
feedback)	

•  Instrument	binary	for	tracing:	
–  pat_build –w ./myapp
–  Creates	instrumented	applica<on:	myapp+pat

-	17	-	

Cray Reveal Recipe (2)

•  Run	instrumented	applicaRon	(myapp+pat)	as	
normal	
–  Ideally	this	is	job	requiring	5-15	mins	run<me,	performing	
important	subrou<nes	in	similar	propor<ons	to	typical	run	

•  This	creates	file	called	myapp+pat+########-
##t.xf (or	directory	myapp+pat+#######-
##t/	for	large	runs)	

•  Create	report	with	loop	staRsRcs	
–  pat_report myapp+pat+* >
loops_report.txt

–  Generates	.ap2 file	&	generates	text	report	in	output	file	

-	18	-	

Cray Reveal Recipe (3)

•  Run	Reveal	
–  reveal /directory/path/myapp.pl (compiler	
info	only)	

–  reveal /directory/path/myapp.pl myapp
+#######+##t.ap2	(compiler	+	profiler	info)	

-	19	-	

Opening Screen

-	20	-	

Scoping Window

-	21	-	

Compiler Annotations & Explanations

-	22	-	

Partial Success in Subroutine

-	23	-	

Successful Scoping

-	24	-	

Directives Generated by Reveal

-	25	-	

Unsuccessful Scoping

-	26	-	

Unsuccessful Scoping Directive

-	27	-	

Cray Reveal Recipe (4)

•  Insert	direcRves	
•  Examine	compiler	feedback	to	determine	potenRal	
loop	reordering	
–  E.g.,	row-	vs.	column-ordered	memory	access	paJerns	
– Moving	condi<onals	outside	of	loops	
–  Cray	compiler	good	at	loop	op<miza<ons	but	requires	
some	human	help	at	<mes	

•  Analyze	performance	ajer	opRmizaRons	
–  (Lather,	rinse,	repeat)	

-	28	-	

National Energy Research Scientific Computing Center

-	29	-	

